当前位置:2019年香港六彩全年资料 > 代价函数 >

马尔可夫链的MRF

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  为了解决这些问题,我们提出一种新的分层 MRF 模型——半树模型,其结构和图15类似,仍然是四叉树,只是层数比完整的四叉树大大减少,相当于将完整的四叉树截为两部分,只取下面的这部分.模型最下层仍和图像 大小一致,但最上层则不止一个节点.完整的四叉树模型所具有的性质完全适用于半树模型,不同点仅在于最上层,完整的树模型从上到下构成 了完整的因果依赖性,而半树模型的层间因果关系被截断,该层节点的父节点及祖先均被删去,因此该层中的各 节点不具有条件独立性,即不满足上述的性质2,因而对这一层转为考虑层内相邻节点间的关系.半树模型和完 整的树模型相比,层次减少了许多,这样,层次间的信息传递快了,概率值也不会因为过多层次的逐层计算而小 到出现下溢.但第 0 层带来了新的问题,我们必须得考虑节点间的交互,才能得出正确的推导结果,也正是因为在 第 0 层考虑了相邻节点间的影响,使得该模型的块现象要好于完整的树模型.对于层次数的选取,我们认为不宜多,太多则达不到简化模型的目的,其优势体现不出来,但也不能太少,因为第0 层的概率计算仍然要采用非迭代的算法,层数少表明第0 层的节点数仍较多,计算费时,所以在实验中将 层数取为完整层次数的一半或一半稍少.

  图像分割即已知观测图像 y,估计 X 的配置,采用贝叶斯估计器,可由一个优化问题来表示:

  ?x = arg min [E C ( x,x )′ Y = y],x其中代价函数 C 给出了真实配置为 x 而实际分割结果为 x′时的代价.在已知 y 的情况下,最小化这一代价的期 望,从而得到最佳的分割.代价函数取法不同得到了不同的估计器,若 C(x,x′)=1?δ(x,x′)(当 x=x′时δ(x,x′)=1,否则 δ(x,x′)=0)得到的是 MAP 估计器,它意味着 x 和 x′只要在一个像素处有不同,则代价为 1,对误分类的惩罚比较重,汪西莉 等:一种分层马尔可夫图像模型及其推导算法

  而在实际中存在一些误分类是完全允许的.若将半树模型的 MPM 算法记为 HT-MPM,它分为向上算法和向下算法两步,向上算法自下而上根据式⑵、 式 ⑶逐层计 算P(yd(s)xs)和 P(xs,xρ(s)yd(s)),对最下层 P(yd(s)xs)=P(ysxs). 向下算法自上 而下根据 式 ⑴逐层计算 P(xsy),对最上层由 P(x0y)采样 x0⑴,…,x0(n),

http://elzabg.com/daijiahanshu/1174.html
点击次数:??更新时间2019-08-10??【打印此页】??【关闭
  • Copyright © 2002-2017 DEDECMS. 织梦科技 版权所有  
  • 点击这里给我发消息
在线交流 
客服咨询
【我们的专业】
【效果的保证】
【百度百科】
【因为有我】
【所以精彩】